Orthogonal and

Orthonormal Vector Sets

We often specify or relate a set of scalar values (e.g., x, y, z) using a set of scalar equations. For example, we might say:

$$
x=y \quad \text { and } \quad z=x+2
$$

From which we can conclude a third expression:

$$
z=y+2
$$

Say that we now add a new constraint to the first two:

$$
x+y=2
$$

We can now specifically conclude that:

$$
x=1 \quad y=1 \quad z=3
$$

Note we can likewise use vector equations to specify or relate a set of vectors (e.g., A, B, C).

For example, consider a set of three vectors that are oriented such that they are mutually orthogonal!

In other words, each vector is perpendicular to each of the other two:

Note that we can describe this orthogonal relationship mathematically using three simple equations:

$$
\begin{aligned}
& \mathbf{A} \cdot \mathbf{B}=0 \\
& \mathbf{A} \cdot \boldsymbol{C}=0 \\
& \mathbf{B} \cdot \boldsymbol{C}=0
\end{aligned}
$$

We can therefore define an orthogonal set of vectors using the dot product:

Three (non-zero) vectors A, B and C form an orthogonal set iff they satisfy $\mathbf{A} \cdot \boldsymbol{B}=\boldsymbol{B} \cdot \boldsymbol{C}=\boldsymbol{C} \cdot \boldsymbol{A}=\mathbf{0}$

Note that there are an infinite number of mutually orthogonal vector sets that can be formed!
E.G:

A: Nope, not in a threedimensional space! Three is the limit.

Consider now a mutually orthogonal set of unit vectors. Such a set can be defined as any three vectors that satisfy these six equations:

$$
\mathbf{A} \cdot \mathbf{B}=\mathbf{B} \cdot \boldsymbol{C}=\boldsymbol{C} \cdot \mathbf{A}=\mathbf{0} \quad \text { (mutually orthognal) }
$$

$$
A \cdot A=B \cdot B=C \cdot C=1 \quad \text { (unit magnitudes) }
$$

A set of vectors that satisfy these equations are said to form an orthonormal set of vectors! Therefore, an orthonormal set consists of unit vectors where:

$$
\hat{a}_{A} \cdot \hat{a}_{B}=\hat{a}_{B} \cdot \hat{a}_{C}=\hat{a}_{C} \cdot \hat{a}_{A}=0
$$

Again, there are an infinite number of orthonormal vector sets, but each set consists of only three vectors.

